Bando per assegno di ricerca
Titolo del progetto di ricerca in italiano | Teorema Kam per Algebre di Poisson: applicazioni a dinamica rotazionale e teoria del centro guida |
---|---|
Titolo del progetto di ricerca in inglese | Kam Theorem on Poisson Algebras: Applications to Rotational Dynamics and Guiding Centre Theory |
Settore Concorsuale | 01 - Scienze matematiche e informatiche |
S.S.D | MAT/07 - FISICA MATEMATICA |
Descrizione sintetica in italiano | SI INTENDE STUDIARE L'ESISTENZA DI TORI INVARIANTI IN CONTESTI DOVE NON SONO IMMEDIATAMENTE DISPONIBILI VARIABILI DI AZIONE-ANGOLO O PEGGIO LE COORDINATE NON SONO NEMMENO CANONICHE. UN ESEMPIO PARADIGMATICO RIGUARDA IL MOTO DI UNA PARTICELLA CARICA IN PRESENZA DI FORTI CAMPI MAGNETICI CHE AGISCONO DA cENTRO GUIDA (CG). PRIMA , IL TEOREMA KAM VERRA' APPLICATO PER DESCRIVERE REALISTICAMENTE IL CONFINAMENTO DEL PLASMA NEI TOKAMAK TRAMITE CAMPI MAGNETICI. SUCCESSIVAMENTE, LA DINAMICA NEI PRESSI DEL CG ANDRA' STUDIATA IN UN OPPORTUNO SISTEMA DI COORDINATE, PER POI PROCEDERE ALLO SVILUPPO ESPLICITO DELLA TEORIA DELLE PERTURBAZIONI (EVENTUALMENTE PER ALGEBRE DI POISSON) FINO ALLA DIMOSTRAZIONE DI ESISTENZA DI TORI KAM SU CUI GIACCIONO ORBITE DELLE PARTICELLE. E' INTERESSANTE STUDIARE ANCHE LA DINAMICA ROTAZIONALE DI UN CORPO (FACENTE EVENTUALMENTE PARTE DI UN SISTEMA PLANETARIO) CON UN APPROCCIO SIMILE, Perché VI SONO PROFONDE ANALOGIE TRA QUESTO PROBLEMA E QUELLO PRECEDENTE |
Descrizione sintetica in inglese | THE RESEARCH PROJECT FOCUSES ON THE EXISTENCE OF INVARIAN TORI IN CONTEXT WHERE ACTION-ANGLE VARIABLES ARE NOT IMMEDIATELY AVALIABLE NOR CANONICAL VARIABLES, THAT IS EVEN WORSE. A PARADIGMATICA EXAMPLE CONCERNS WITH THE MOTION OF A CHARGED PARTICLE THAT IS SUBJECT TO STRONG MAGNETIC FIELDS ACTING AS GUIDING CENTRE (CG) . FIRST, THE KAM THEOREM SHALL BE APPLIEDE SO TO DESCRIBE A REALISTIC ONFINEMENT STRATEGY FOR PLASMAS IN TOKAMAKS. THEREFORE, THE DYNAMICS ABOUT THE GC SHALL BE STUDIED IN A SUITABLE SET OF COORDINATES, SO TO DEVELOP EXPLICITY THE PERTUBATION THEORY (FOR POISSON ALGEBRAS, IF IS IS CONVENIENT) IN ORDER TO PROVE THE EXISTENCE OF KAM TORI WHERE THE ORBITS OF THE PARTICLE ARE LYING. IT IS WORTH TO STUDY ALSO THE ROTATIONAL DYNAMICS OF A BODY (THAT CAN BE PART OF A PLANETARY SYSTEM ) WITH A SIMILAR APPROACH BECAUSE THERE ARE DEEP ANALOGIES BETWEEN THE LATTER PROBLEM AND THE FORMER ONE |
Data del bando | 13/01/2020 |
Numero di assegnazioni per anno | 1 |
Paesi in cui può essere condotta la ricerca |
Italy |
Paesi di residenza dei candidati |
EUROPE |
Nazionalità dei candidati |
EUROPE |
Sito web del bando | http://WWW.UNIROMA2.IT |
Destinatari dell'assegno di ricerca (of target group) |
More Experienced researcher or >10 yrs (Senior) |
---|
Nome dell'Ente finanziatore | UNIVERSITA' DEGLI STUDI DI ROMA TOR VERGATA - DIPARTIMENTO DI MATEMATICA |
---|---|
Tipologia dell'Ente | Public research |
Paese dell'Ente | Italy |
Città | ROMA |
Sito web | http://WWW.UNIROMA2.IT |
ASSEGNI.RICERCA@AMM.UNIROMA2.IT | |
Telefono | 0672592344 |
L'assegno finanziato/cofinanziato attraverso un EU Research Framework Programme? | No |
---|
Data di scadenza del bando | 02/02/2020 - alle ore 00:00 |
---|---|
Come candidarsi | http://concorsionline.uniroma2.it/ |